Photoelectrochemical enhancement effect of Ni(OH)2modification on a-Fe2O3film
Wang Haihua1, He Tao1,*, Dong Yanzi2, Han Dong1, Zhao Yuhua1
1.College of chemistry and chemical engineering,Yantai University,Yantai 264005,Shandong,China
2.Yantai food and drug inspection and testing center,Yantai 264005,Shandong,China
Abstract
A simple electrochemical deposition process is developed herein to prepare Fe2O3 films,Ni(OH)2 layer is then electrochemically deposited to promote the photoactivity of the Fe2O3 film.In this work,the preparative parameters are optimized.Field emission scanning electron microscope (FE-SEM) and powder X-ray diffraction technique (XRD) are used to characterize the film structure.Cyclic voltammerty (CV) and chronoamperametry (i-t) techniques are applied to measure the OER overpotential and photocurrent density.The outcome of this work indicates that Ni(OH)2 loading can effectively enhance the separation of photogenerated electron and hole pairs which is responsible for the remarkable improvement of the photoactivity.
图3 Ni(OH)2修饰a-Fe2O3前后在有光 (420 nm LED 光源)及无光条件下的循环伏安图 (a.α -Fe2O3+无光; b.α -Fe2O3+光照; c.α -Fe2O3/Ni(OH)2+无光; d.α -Fe2O3/Ni(OH)2+光照)Figure 3 Cyclic voltammetry plots of the a-Fe2O3films before and after loading Ni(OH)2 measured in dark or under super band gap irradiation
李越湘, 吕功煊, 李树本. 半导体光催化分解水研究进展[J]. 分子催化, 2001, 15(1): 72-79. Liyuexiang, Lvgongxuan, Lishuben. Progress in photocatalytic decomposition of water with semiconductors[J]. Journal of Molecular Catalysis, 2001, 15(1): 72-79. [本文引用:1]
[2]
王宝辉, 吴红军, 刘淑芝, 等. 太阳能分解水制氢技术研究进展[J]. 化工进展, 2006, 25(7): 733-738. WangBaohui, WuHongjun, LiuShuzhi. Advance on research of hydrogen production by solar water splitting[J]. Chemical Industry and Engineering Progress, 2006, 25(7): 733-738. [本文引用:1]
[3]
SivulaK, Le FF, GrätzelP. Solar water splitting: progress using hematite(a-Fe2O3) photoelectrodes[J]. ChemSusChem, 2011, 432-449. [本文引用:1]
[4]
Zhong LS, Hu JS, Liang HP, et al. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment[J]. Advanced Materials, 2006, 18(18): 2426-2431. [本文引用:1]
[5]
Hu YS, KleimanshwarscteinA, Forman AJ, et al. Pt-Doped α-Fe2O3 thin films active for photoelectrochemical water splitting[J]. Chemistry of Materials, 2008, 20(12): 3803-3805. [本文引用:1]
[6]
Zhong DK, CornuzM, SivulaK, et al. Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation[J]. Energy & Environmental Science, 2011, (5): 1759-1764. [本文引用:1]
[7]
WangZ, LuanD, MadhaviS, et al. Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability[J]. Energy & Environmental Science, 2012, 5(1): 5252-5256. [本文引用:1]
[8]
Park JH, Kim SW, Bard AJ. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting[J]. Nano Letters, 2006, 6(1): 24-28. [本文引用:1]
[9]
YeG, GongY, LinJ, et al. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction[J]. Nano Letters, 2016, 16(2): 1097. [本文引用:1]
[10]
Bora DK, BraunA, ErniR, et al. Hematite-NiO/α-Ni(OH)2 heterostructure photoanode with high electrocatalytic current density and charge storage capacity[J]. Physical Chemistry Chemical Physics, 2013, 15: 12648-12659. [本文引用:1]
[11]
Young KM, Hamann TW. Enhanced photocatalytic water oxidation efficiency with Ni(OH)2catalysts deposited on α-Fe2O3via ALD[J]. Chemical Communications, 2014, 63: 8727-8730. [本文引用:1]
[12]
LiQ, BianJ, ZhangN, et al. Loading Ni(OH)2 on the Ti-doped hematite photoanode for photoelectrochemical water splitting[J]. Electrochimica Acta, 2015, 155: 383-390. [本文引用:1]
[13]
LiuQ, CaoF, WuF, et al. Water splitting: ultrathin amorphous Ni(OH)2 nanosheets on ultrathin α-Fe2O3 films for improved photoelectrochemical water oxidation[J]. Advanced Materials Interfaces, 2016, 21(3): 250-256. [本文引用:1]