氢气选择催化还原氮氧化物反应活性中间物种的研究进展
张肖肖*, 朱明发, 豆丽靖, 张月花, 吴玉菊
德州职业技术学院,山东 德州 253034
通讯联系人: 张肖肖。

作者简介:张肖肖,1986年生,女,山东省泰安市人,博士,讲师,研究方向为环境催化。

摘要

氮氧化物是大气主要污染物之一,严重危害生态环境和人类健康。选择催化还原在富氧条件下能够高选择性的消除氮氧化物。氢气选择催化还原氮氧化物(H2-SCR)因低温高活性备受关注。综述H2-SCR研究中活性中间物种的研究进展,概述红外谱图中不同活性物种的吸收谱峰,对活性物种形式及所处位置进行总结和分类。

关键词: 化学动力学; H2; 选择催化还原; 氮氧化物; 活性中间物种
中图分类号:X701;O643.1    文献标志码:A    文章编号:1008-1143(2018)12-0009-07
Research progress on active intermediate species in H2-SCR
Zhang Xiaoxiao*, Zhu Mingfa, Dou Lijing, Zhang Yuehua, Wu Yuju
Dezhou Vocational and Technical College,Dezhou 253034,Shandong,China
Abstract

Nitrogen oxide (NOx) is one of the main pollutants in atmosphere,it seriously endangers ecological environment and human health.Selective catalytic reduction (SCR) is a technology that can selectively eliminate NOx in presence of excess oxygen.H2-SCR has attracted much attention due to its high activity at low temperature.This paper reviews the research progress of different kinds of active intermediate species and outlines the adsorption band of different active species in IR spectra.The form and site of active intermediate species are summarized and classified with an emphasis.

Keyword: chemical kinetics; H2; selective catalytic reduction; nitrogen oxide; active intermediate species

固定源(如电厂)废气中的氮氧化物(NOx)是大气主要污染物之一, 引发多种环境问题, 严重危害人类健康。选择催化还原(SCR)是工业上应用最广的脱硝技术之一, 在富氧气氛、催化剂存在条件下, 还原剂优先与废气中的NOx反应使其还原为N2。用于SCR的还原剂有NH3、烃类(HC)和H2等。与(300~400) ℃[1, 2, 3, 4]的NH3-SCR和(300~600) ℃的HC-SCR[5, 6, 7, 8, 9, 10, 11, 12]相比, 在贵金属上, H2可在(100~150) ℃活化还原NOx[13, 14, 15, 16, 17]。此外, H2清洁、无污染、价格低廉、供给方便, 汽车尾气和电厂废气中均含有可供利用的H2, H2-SCR技术有希望应用于汽车和电厂废气中NOx消除。

自1971年Jones J H等[18]首次研究Pt/Al2O3催化剂上H2-SCR反应以来, 人们对H2-SCR反应的催化剂类型[13, 19, 20]、催化剂预处理条件[19]、反应条件[21, 22]及反应机制[22]等方面进行了大量研究。还原反应机制主要有三种观点:(1)吸附生成NO型物种或NOδ +物种; (2)吸附生成亚硝酸盐和/或硝酸盐物种; (3)反应生成NHx物种、NOx、N H4+物种及气相NO和O2。不同催化剂上的活性含氮物种不同, 探究在反应过程中催化剂上的表面含氮物种可为深入认识其反应路径和反应机制提供重要理论基础。H2-SCR反应过程中的NOx表面活性物种有NO型、NOδ +、亚硝酸盐、硝酸盐、NHx和N H4+。本文综述不同类型催化剂上含氮活性物种的研究进展, 总结红外谱图上的出峰位置以及催化剂组成对活性中间物种的影响。

1 NO型和NOδ +物种

负载型贵金属催化剂上, 反应混合气中的NO以NO和/或NOδ +形式直接吸附在催化剂活性组分或载体上, 过程中发生如下反应:

NO(g) ⇌NOads

NOads→ Nads+Oads

NOads+Nads→ N2O

Nads+Nads→ N2

H2(g) ⇌2Hads

2Hads+Oads⇌H2O

负载型Pt催化剂上, 活性NO和NOδ +物种主要位于Pt位上, 且与Pt的存在状态和催化剂类型相关。

Burch R等[14]发现, Pt/SiO2催化剂上NOx吸附生成NO预吸附物种(NOpreads)、NO吸附物种(NOads)、NO二聚物[(NO)2和(NO )2-]。含氮物种反应生成N2和N2O的路径如图1所示。(NO)2和(NO )2-是生成N2O的中间物种, 不是H2-SCR反应活性中间物种。

图1 NO-H2-O2反应中Pt/SiO2催化剂上表面物种反应路径Figure 1 Reaction route of surface species on Pt/SiO2catalyst in NO-H2-O2

Frank B[23]和Marina O A[24]发现Pt表面NO是Pt-Mo-Co/α -Al2O3和Pt/β -Al2O3催化剂在NO-H2-O2反应中的活性中间物种。Shibata J等[25]发现, Pt表面NO是Pt/MFI催化剂在H2-SCR反应中的活性中间物种, 在红外谱图中峰位为1 844 cm-1和1 941 cm-1。Schott F J P等[17]发现与不同尺寸Pt颗粒键合的NO是Pt/ZrO2催化剂在H2-SCR反应中的活性中间物种, 红外谱图中峰位为1 720 cm-1、1 790 cm-1和1 860 cm-1。Wu等[26]发现Pt-NO是Pt/Si-MCM-41和Pt/Al-MCM-41催化剂在NO-H2-O2反应过程中的活性中间物种, Pt/Si-MCM-41上活性物位于Pt缺陷位(1 755 cm-1), Pt/Al-MCM-41上活性物位于Pt颗粒平台位(1 710 cm-1)。Zhang等[27]通过原位反应红外谱图证实, 金属态Pt位上的NO(Pt0-NO, 1 475 cm-1)是Pt-W/HZSM-5催化剂上的活性中间物种, Pt位上的硝酸盐(Pt-N O3-, 1 625 cm-1和1 590 cm-1)不是活性中间物种。Yu等[28]发现, Pt-NO(1 836 cm-1)和Pt-NOδ +(2 009 cm-1和1 889 cm-1)是Pt-Cr/ZSM-35催化剂在H2-SCR反应中的活性中间物种。Yang等[21]发现, Pt-NOδ +(1 868 cm-1)是Pt/H-FER催化剂上的活性中间物种, Pt-NO(1 835 cm-1)、NO2和硝酸盐物种不是活性中间物种。

Macleod N等[29]发现, 在NO-H2-O2反应中, Pd/TiO2催化剂在反应温度范围内有两个NO最大转化率(110 ℃和170 ℃~240 ℃)。原位漫反射红外光谱研究结果表明, 低温下NO解离吸附, 解离生成的两个Nad结合生成N2, Nad与NO反应生成N2O, 吸附NO是活性中间物种, 该类物种有5种存在形式:NO-(1 152cm-1), Pd2+-NO(1 868 cm-1和1 819 cm-1), Pd+-NO(1 795 cm-1), Pd-NO-(1 693 cm-1)和Pd0-NO(1 733 cm-1)。Twagirashema I等[30]发现, Pd/LaCoO3催化剂在反应温度范围内有两个NO最大转化率, 反应温度低于200 ℃时, 金属Pd颗粒上, H2与NO直接反应, 仅金属态Pd表面NO是活性中间物种。Miller D D等[31]发现, 反应气中NO在Pd/Al2O3和Ag-Pd/Al2O3催化剂Pd位上的吸附形式有Pd0-NO(1 746 cm-1)和Pd+-NO(1 828 cm-1), Pd0-NO是催化剂在H2-SCR反应中的活性物种。Furfori S等[32, 33]指出钙钛矿型催化剂La0.8Sr0.2Fe0.9Pd0.1O3上吸附NO物种是活性中间物种, H2-SCR反应机理为:

NOad+NO→ N2O+Oad

2NOad→ 2Nad+O2

2NOad→ N2+2Oad

2 亚硝酸盐和硝酸盐物种

反应混合气中NO和催化剂活性组分上的吸附氧反应生成亚硝酸盐和/或硝酸盐, 该物种还原路径有:(1)活性组分上的吸附氢将其直接还原; (2)亚硝酸盐和/或硝酸盐转移并固定在载体上, 活性组分上的吸附氢溢流至载体上将其还原。活性物种位于活性组分和/或载体上, 取决于催化剂组成和类型。

2.1 亚硝酸盐

Hamada S等[35, 36] 通过红外光谱证明, 占据Pt表面具有低氧化态的NOx吸附物种(N O2-, 1 350 cm-1)是Pt-HT在H2-SCR反应中的活性中间物种。Pt表面或Pt周围Na上的N O2-(1 300 cm-1)是Pt-Na-ZSM-5催化剂[37]在H2-SCR反应中的活性中间物种。

2.2 硝酸盐

在H2-SCR反应过程中, 活性硝酸盐物种位于催化剂的活性组分(如Pt, Pd)表面和/或载体上, 活性组分表面的硝酸盐来自NO氧化, 载体上的硝酸盐来自Pt表面吸附NO物种氧化转移或者载体晶格氧氧化。

Costa C N等[34, 38]通过漫反射红外光谱研究发现, 在H2-SCR反应中, Pt/SiO2催化剂表面物种有:Pt表面桥式NO物种、NOδ +、单齿硝酸盐、双齿硝酸盐和桥式硝酸盐; 载体表面亚硝酰基和双齿硝酸盐物种。Pt表面的亚硝酰基(Pt-NOδ +, 1 900 cm-1)和单齿硝酸盐(Pt-NO3, 1 480 cm-1)是该催化剂上的活性中间物种。活性单齿硝酸盐物种的生成路径为:

O2⇌2Oads

NOads+Oads→ NO2ads

NO2ads+Oads→ NO3ads

Machida M等[19]发现在H2-SCR反应中Pt/TiO2-ZrO2催化剂表面物种有双齿硝酸盐和NO2。Pt表面的硝酸盐(1 575 cm-1、1 280 cm-1和1 023 cm-1)是活性中间物种, 反应步骤为:

NO+1/2O2+Oad→ NO3ad

NO3ad+2H2→ 1/2N2+2H2O+Oad

NO3ad+3/2H2→ 1/2N2O+3/2H2O+Oad

Costa C N等[15, 34]发现, 在H2-SCR反应中, Pt/La0.5Ce0.5MnO3催化剂上NOx主要有八种形式:Pt表面桥式或弯曲NO、单齿硝酸盐和双齿硝酸盐, 载体上亚硝酰、螯和亚硝酸盐、N2O2n-1(n=1和2)、单齿硝酸盐和双齿硝酸盐。Pt表面桥式或者弯曲NO物种(1 700 cm-1), 载体上的亚硝酰基(M-NO+和M-N O2+, 2 220 cm-1)和双齿硝酸盐物种(M-O-(NO)-O-M, 1 540 cm-1)是活性中间物种。

Wu等[26]发现在H2-SCR反应中, 对于Pt/Si-MCM-41和Pt/Al-MCM-41催化剂, Pt表面NO, 载体表面自由硝酸盐(1 370 cm-1)、亚硝酸盐(1 420 cm-1)、单齿硝酸盐(1 545 cm-1和1 520 cm-1)、螯和硝酸盐(1 585 cm-1)和桥式硝酸盐(1 630 cm-1)是活性中间物种。吸附NO氧化生成亚硝酸盐或硝酸盐, 储存在载体上。

Costa C N等[38]发现在H2-SCR反应过程中, 复合氧化物MgO-CeO2负载Pt催化剂上, Pt表面的含氮物种有桥式或者弯曲NO(1 670 cm-1)、Pt-NOδ +(2 000 cm-1~1 900 cm-1)、双齿硝酸盐(1 620 cm-1)。活性中间物种仅位于载体上, MgO载体上的双齿(桥式)硝酸盐(1 540 cm-1)发生不可逆化学吸附; 与CeO2相邻金属阳离子-氧阴离子位上的硝酸盐(N O3-)共吸附的亚硝酰基(NO+, 2 220 cm-1)可与气相NO交换。

Itoh M等[39]发现载体上的硝酸盐(1 305 cm-1和1 466 cm-1)是Pt/CeO2催化剂在H2-SCR反应中的活性中间物种。其生成路径如图2所示。

图2 H2-SCR反应中Pt/CeO2催化剂上NOx表面物种变化Figure 2 Transformation of NOx surface species over Pt/CeO2 in H2-SCR

武鹏等[40]发现, 载体上的N O3-是Pt/SAPO-34催化剂在H2-SCR反应中的活性中间物种。其生成路径为:(I)气态NO在阳离子活性中心形成吸附态M-NOad, 被Oad进一步氧化生成M-N O3-; (Ⅱ )气态NO(g)以M-NO+的形式吸附在SAPO-34 分子筛的B 酸中心上, M-NO+通过电子转移迁移到邻近的阳离子位上形成不稳定的M-NOδ +, 进一步氧化生成M-N O3-, 活性M-N O3-物种被H2还原生成N2和N2O。

Machida M等[41]发现载体上的亚硝酸盐和硝酸盐是Pd/MnOx-CeO2催化剂在H2-SCR反应中的活性中间物种, 其存在形式为螯和亚硝酸盐(1 200 cm-1)、单齿硝酸盐(1 460 cm-1、1 300 cm-1和1 050 cm-1)和双齿硝酸盐(1 630 cm-1、1 550 cm-1、1 050 cm-1), 结构和生成路径如图3所示。

图3 H2-SCR反应中Pd/MnOx-CeO2催化剂上活性中间物种结构和生成路径Figure 3 Structure and formation route of active intermediate species on Pd/MnOx-CeO2 in H2-SCR

在H2-SCR反应中, Au/NaY和Au/ZSM-5催化剂[42]表面物种有NO-Au(1 780 cm-1)、NO-AuIO(1 760 cm-1), 固态N2O4(1 715 cm-1), 气相N2O4(1 704 cm-1), NO2和N O2-(1 576 cm-1、1 556 cm-1), NO2和N2O4是催化剂在反应中的活性中间物种。其生成路径如为:

2NO+2Oads→ [2NO2⇌N2O4]ads

N2O4(NO2)+2H2→ N2+2H2O

2NO+2H2→ N2+2H2O

3 NHx和N H4+物种

Shibata J等[25]发现, 在NO-H2-O2反应过程中, Pt/MFI催化剂载体B酸位上有N H4+(1 447 cm-1)出现。其生成路径如图4所示, N H4+与NO和O2反应仅生成N2和H2O。

图4 Pt催化剂上H2-SCR反应机制Figure 4 Reaction mechanism of H2-SCR over Pt catalysts.

Pt/Al-MCM-41[26]、Pt-W/HZSM-5[27]、Pt-Cr/ZSM-35[28]和Pt/HY[22]等催化剂上原位生成的N H4+物种是活性中间物种, 红外谱峰归属如表1所示。

表1 不同催化剂上活性NHx物种和N H4+物种红外谱峰 Table 1 IR spectrum peak of active NHx and N H4+ species over different catalysts

Qi G等[43]发现, 在H2-SCR反应过程中, Pd-V2O5/TiO2-Al2O3催化剂上表面物种有Pd0-NO(1 740 cm-1)、气相或者弱吸附的NO(1 904 cm-1和1 837 cm-1)、NO2(1 611 cm-1)、硝酸盐(1 583 cm-1、1 348 cm-1、1 300 cm-1)和N H4+(1 460 cm-1、1 680 cm-1)。N H4+是活性中间物种, 其生成路径如图5所示。

图5 H2-SCR反应中Pd-V2O5/TiO2-Al2O3催化剂上活性N H4+物种生成路径Figure 5 Formation routes of active N H4+ species over Pd-V2O5/TiO2-Al2O3 catalyst in H2-SCR

Pd/Al2O3[44]和Pd/TiO2[29]催化剂上原位生成的N H4+是H2-SCR反应中的活性中间物种。Ir/SiO2[45]和Rh/SiO2[46]催化剂上的NHx(如NH2)是H2-SCR反应中的活性中间物种。

4 结 语

(1)负载型Pt或Pd催化剂因低温高活性在H2-SCR反应中备受关注。反应过程中, 活性NOx中间物种有:NO型、NOδ +、亚硝酸盐、硝酸盐、NHx和N H4+, 主要位于催化剂活性组分和载体上。

(2)活性物种在红外谱图上谱峰位置不同。NO型和NOδ +源自反应气中NO的直接吸附, 主要位于活性组分位上。亚硝酸盐和硝酸盐是NO被活性组分表面氧和/或载体晶格氧氧化生成, 位于活性组分位和/或载体上。NHx和N H4+是NO在活性组分表面吸附、解离、加氢生成, 再转移至载体B酸位上。

The authors have declared that no competing interests exist.

参考文献
[1] Li J H, Chang H Z, Ma L, et al. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-a review[J]. Catalysis Today, 2011, 175(1): 147-156. [本文引用:1]
[2] Choo S T, Lee Y G, Nam I S, et al. Characteristics of V2O5 supported on sulfated TiO2 for selective catalytic reduction of NO by NH3[J]. Applied Catalysis A: General, 2000, 200(1/2): 177-188. [本文引用:1]
[3] Nakajima F, Hamada I. The state-of-the-art technology of NOx control[J]. Catalysis Today, 1996, 29(1): 109-115. [本文引用:1]
[4] Yu J, Guo F, Wang Y L, et al. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3[J]. Applied Catalysis B: Environmental, 2010, 95(1/2): 160-168. [本文引用:1]
[5] Iwamoto M. Proceedings of the meeting of catalytic technology for removal of nitrogen monoxide[C]. Tokyo: Catalysis Society of Japan, 1990. [本文引用:1]
[6] Held W, Koning A, Rihter T, et al. Catalytic nitrogen oxide (NOx) reduction in net oxidizing exhaust gas[J]. SAE Technical Paper, 1990, 2(2): 257. [本文引用:1]
[7] Kimmerle B, Baiker A, Grunwaldt J D. Oscillatory behaviour of catalytic properties, structure and temperature during the catalytic partial oxidation of methane on Pd/Al2O3[J]. Physical Chemistry Chemical Physics, 2010, 12(10): 2288-2291. [本文引用:1]
[8] Peskov N V, Slinko M M, Bychkov V Y, et al. Mathematical modelling of oscillatory behaviour during methane oxidation over palladium catalysts[J]. Chemical Engineering Science, 2012, 84: 684-694. [本文引用:1]
[9] Lee K J, Rao K N, Yu C Y, et al. Synthesis and characterisation of K-Ag/Al2O3 catalysts for CH4-SCR of NOx: effect of SO2[J]. Research on Chemical Intermediates, 2013, 39(3): 1463-1479. [本文引用:1]
[10] Yu Q, Wang X P, Xing N, et al. The role of protons in the NO reduction by acetylene over ZSM-5[J]. Journal of Catalysis, 2007, 245(1): 124-132. [本文引用:1]
[11] Liu Z M, Woo S I, Lee W S. In situ FT-IR studies on the mechanism of selective catalytic reduction of NO x by propene over SnO2/Al2O3 catalyst[J]. The Journal Physical Chemistry B, 2006, 110(51): 26019-26023. [本文引用:1]
[12] Shimizu K, Sugino K, Kato K, et al. Reaction mechanism of H2-promoted selective catalytic reduction of NO with C3H8 over Ag-MFI zeolite[J]. The Journal of Physical Chemistry C, 2007, 111(5): 6481-6487. [本文引用:1]
[13] Satsuma A, Hashimoto M, Shibata J J, et al. Nitrous oxide free pathway for selective reduction of NO by hydrogen over supported Pt catalysts[J]. Chemical Communications, 2003, 9(14): 1698-1699. [本文引用:2]
[14] Burch R, Shestov A A, Sullivan J A. A steady-state isotopic transient kinetic analysis of the NO/O2/H2 reaction over Pt/SiO2 catalysts[J]. Journal of Catalysis, 1999, 188(1): 69-82. [本文引用:2]
[15] Costa C N, Stathopoulos V N, Belessi V C, et al. An investigation of the NO/H2/O2 (Lean-deNOx) reaction on a highly active and selective Pt/La0. 5Ce0. 5MnO3 catalyst[J]. Journal of Catalysis, 2001, 197(2): 350-364. [本文引用:2]
[16] Burch R, Coleman M D. An investigation of promoter effects in the reduction of NO by H2 under lean-burn conditions[J]. Journal of Catalysis, 2002, 208(2): 435-447. [本文引用:1]
[17] Schott F J P, Balle P, Adler J, et al. Reduction of NOx by H2 on Pt/WO3/ZrO2 catalysts in oxygen-rich exhaust[J]. Applied Catalysis B: Environmental, 2009, 87(1/2): 18-29. [本文引用:2]
[18] Jones J H, Kummer J T, Otto K, et al. Selective catalytic reaction of hydrogen with nitric oxide in the presence of oxygen[J]. Environmental Science & Technology, 1971, 5(9): 790-798. [本文引用:1]
[19] Machida M, Ikeda S, Kurogi D, et al. Low temperature catalytic NOx-H2 reactions over Pt/TiO2-ZrO2 in an excess oxygen[J]. Applied Catalysis B: Environmental, 2001, 35(2): 107-116. [本文引用:3]
[20] Costa C N, Efstathiou A M. Low-temperature H2-SCR of NO on a novel Pt/MgO-CeO2 catalys[J]. Applied Catalysis B: Environmental, 2007, 72(3): 240-252. [本文引用:1]
[21] Yang S F, Wang X P, Chu W L, et al. An investigation of the surface intermediates of H2-SCR of NOx over Pt/H-FER[J]. Applied Catalysis B: Environmental, 2011, 107(3): 380-385. [本文引用:2]
[22] Zhang X X, Wang X P, Zhao X J, et al. An investigation on N2O formation route over Pt/HY in H2-SCR[J]. Chemical Engineering Journal, 2014, 252(18): 288-297. [本文引用:3]
[23] Frank B, Emig G, Renken A. Kinetics and mechanism of the reduction of nitric oxides by H2 under lean-burn conditions on a Pt-Mo-Co/α-Al2O3 catalyst[J]. Applied Catalysis B: Environmental, 1998, 19(1): 45-57. [本文引用:1]
[24] Marina O A, Yentekakis I V, Vayena C G, et al. In situ controlled promotion of catalyst surfaces via NEMCA: the effect of Na on the Pt-catalyzed NO reduction by H2[J]. Journal of Catalysis, 1997, 166(2): 218-228. [本文引用:1]
[25] Shibata J, Hashimoto M, Shimizu K, et al. Factors controlling activity and selectivity for SCR of NO by hydrogen over supported platinum catalysts[J]. The Journal of Physical Chemistry B, 2004, 108(47): 18327-18335. [本文引用:2]
[26] Wu P, Li L D, Yu Q, et al. Study on Pt/Al-MCM-41 for NO selective reduction by hydrogen[J]. Catalysis Today, 2010, 158(3): 228-234. [本文引用:3]
[27] Zhang X X, Wang X P, Zhao X J, et al. Promotion effect of tungsten on the activity of Pt/HZSM-5 for H2-SCR[J]. Chemical Engineering Journal, 2015, 260: 419-426. [本文引用:2]
[28] Yu Q, Richter M, Li L D, et al. The promotional effect of Cr on catalytic activity of Pt/ZSM-35 for H2-SCR in excess oxygen[J]. Catalysis Communications, 2010, 11(11): 955-959. [本文引用:2]
[29] Macleod N, Cropley R, Lambert R M. Efficient reduction of NOx by H2 under oxygen-rich conditions over Pd/TiO2 catalysts: an in situ DRIFTS study[J]. Catalysis Letters, 2003, 86(1/3): 69-75. [本文引用:2]
[30] Twagirashema I, Engelmann-Pirez M, Frere M, et al. An in situ study of the NO+H2+O2 reaction on Pd/LaCoO3 based catalysts[J]. Catalysis Today, 2007, 119(1): 100-105. [本文引用:1]
[31] Miller D D, Chuang S S C. In situ infrared study of NO reduction over Pd/Al2O3 and Ag-Pd/Al2O3 catalysts under H2-rich and lean-burn conditions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(6): 613-621. [本文引用:1]
[32] Furfori S, Bensaid S, Russo N, et al. Towards practical application of lanthanum ferrite catalysts for NO reduction with H2[J]. Chemical Engineering Journal, 2009, 154(1): 348-354. [本文引用:1]
[33] Furfori S, Russo N, Fino D, et al. NO SCR reduction by hydrogen generated in line on perovskite-type catalysts for automotive diesel exhaust gas treatment[J]. Chemical Engineering Science, 2010, 65(1): 120-127. [本文引用:1]
[34] Costa C N, Efstathiou A M. Transient isotopic kinetic study of the NO/H2/O2 (Lean de-NOx) reaction on Pt/SiO2 and Pt/La-Ce-Mn-O catalysts[J]. The Journal of Physical Chemistry B, 2004, 108(8): 2620-2630. [本文引用:2]
[35] Hamada S, Hibarino S, Ikeue K, et al. Preparation of supported Pt-M catalysts (M=Mo and W) from anion-exchanged hydrotalcites and their catalytic activity for low temperature NO-H2-O2 reaction[J]. Applied Catalysis B: Environmental, 2007, 74(3): 197-202. [本文引用:1]
[36] Hamada S, Ikeue K, Machida M. Catalytic NO-H2-O2 reaction over Pt/Mg-Al-O prepared from PtCl62- and Pt(NO2)42- exchanged hydrotalcites[J]. Applied Catalysis B: Environmental, 2007, 71(1): 1-6. [本文引用:1]
[37] Machida M, Watanabe T. Effect of Na-addition on catalytic activity of Pt-ZSM-5 for low-temperature NO-H2-O2 reactions[J]. Applied Catalysis B: Environmental, 2004, 52(4): 281-286. [本文引用:1]
[38] Costa C N, Efstathiou A M. Mechanistic aspects of the H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst[J]. The Journal of Physical Chemistry C, 2007, 111(7): 3010-3020. [本文引用:2]
[39] Itoh M, Motoki K, Saito M, et al. Lean NO x reduction by hydrogen over Pt-supported rare earth oxide catalysts and their in situ DRIFTs study[J]. Bulletin of the Chemical Society of Japan, 2009, 82(9): 1197-1202. [本文引用:1]
[40] 武鹏, 刘运霞, 章福祥, . Pt/SAPO-34在低H2选择催化还原NO反应中的催化活性[J]. 催化学报, 2008, 29(2): 191-196.
Wu Peng, Liu Yunxia, Zhang Fuxiang, et al. Catalytic activity of Pt/SAPO-34 for selective catalytic reduction of NO by H2 at low temperature[J]. Chinese Journal of Catalysis, 2008, 29(2): 191-196. [本文引用:1]
[41] Machida M. NOx-sorbing metal oxides, MnO x-CeO2. Oxidative NO adsorption and NOx-H2 reaction[J]. Catalysis Surveys from Japan, 2002, 5(2): 91-102. [本文引用:1]
[42] Salama T M, Ohnishi R, Ichikawa M. Remarkable oxygen promotion of the selective reduction of nitric oxide by hydrogen over Au/NaY and Au/ZSM-5 zeolite catalysts[J]. Chemical Communications, 1997, 28(17): 105-106. [本文引用:1]
[43] Qi G, Yang R T, Rinaldi F C. Selective catalytic reduction of nitric oxide with hydrogen over Pd-based catalysts[J]. Journal of Catalysis, 2006, 237(2): 381-392. [本文引用:1]
[44] 于青, 孔凡晓, 李兰冬, . Pd 基催化剂上H2快速选择催化还原NOx[J]. 催化学报, 2010, 31(3): 261-263.
Yu Qing, Kong Xiaofan, Li Land ong, et al. Fast catalytic reduction of NOx by H2 over Pd-based catalysts[J]. Chinese Journal of Catalysis, 2010, 31(3): 261-263. [本文引用:1]
[45] Yoshinari T, Sato K, Haneda M, et al. Positive effect of coexisting SO2 on the activity of supported iridium catalysts for NO reduction in the presence of oxygen[J], Applied Catalysis B: Environmental, 2003, 41(1): 157-169. [本文引用:1]
[46] Hasegawa Y, Haneda M, Kintaichi Y, et al. Zn-promoted Rh/SiO2 catalyst for the selective reduction of NO with H2 in the presence of O2 and SO2[J]. Applied Catalysis B: Environmental, 2005, 60(1): 41-47. [本文引用:1]