Xue Xiaoxiao1,2, Yang Shicheng1,2, Zhang Zhengting1,2, Shen Xiaoshuai1,2, Zhang Yulong1,2,*
1.College of Chemistry and Chemical Engineering,Henan Polytechnic University,Jiaozuo 454350,Henan,China
2.Henan Key Laboratory of Coal Green Conversion,Jiaozuo 454350,Henan,China
Abstract
This article reviews the development of metal organle frameworks (MOFs) materials in recent years.The synthesis methods,applications and structural characteristics of MOFs materials are summarized accordingly.Finally,the development prospects of MOFS materials are prospected.
Keyword:
catalyst engineering; metal organic framework; classification and features; synthesis method; influence factor
图2 (a)和(b)铜网支撑的Cu3(BTC)2膜SEM照片; (c)膜断面照片; (d)膜光镜照片Figure 2 (a) and (b) SEM image of Cu3(BTC)2 film supported by copper mesh; (c) film section view (d) film light mirror image
SeoaneB, CastellanosS, DikhtiarenkoA, et al. Multi-scale crystal engineering of metal organic frameworks[J]. Coordination Chemistry Reviews, 2016, 307: 147-187. [本文引用:1]
[2]
Nand asiri MI, Jambovance SR, Mcgyail BP, et al. Adsorption, separatiom and catalytic properties of densified metal-organic frameworks[J]. Coordination Chemistry Reviews, 2016, 311: 38-52. [本文引用:1]
[3]
CuiY, LiB, HeH, et al. Metal-organic frameworks as platforms for functional materials[J]. Accounts of Chemical Research, 2016, 49(3): 483-493. [本文引用:1]
[4]
BuserH, SchwarzenbachD, PetterW, et al. The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3·xH2O[J]. Inorganic Chemistry, 1977, 16(11): 2704-2710. [本文引用:1]
[5]
KinoshitaY, MatsubaraI, HiguchiT, et al. The crystal structure of bis(adiponitrilo) copper(I)nitrate[J]. Bulletin of the Chemical Society of Japan, 1959, 32(11): 1221-1226. [本文引用:1]
[6]
LiH, EddaoudiM, O’keeffeM, et al. Design and synthesis of an exceptionally stable and highiy porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. [本文引用:1]
[7]
FereyG, SerreC, Mellot-DraznieksC, et al. A hybrid solid with giantpores prepared by a combomation of chemistry, simulation, and powder diffraction[J]. Angewand te Chemie, 2004, 116(64): 6456-6464. [本文引用:1]
[8]
KitagawaS, KitauraR, Shin-ichiro N, et al. Functional porous cpprdination polymers[J]. Angewand et Chemie International Edition, 2004, 43(18): 2334-2375. [本文引用:1]
[9]
LiH, EddaoudiM, Groy TL, et al. Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC)(BDC=1, 4-benzenedicarboxylate). Journal of the American Chemical Society, 1998, 120(33): 8571-8572. [本文引用:1]
[10]
LiH, EddaoudiM, Groy TL, et al. Establishing microporosity in open metal-organic Frameworks: gas sorption isotherms for Zn(BDC)(BDC=1, 4-benzenedicarboxylate)[J]. Journal of the American Chemical Society, 1998, 120(33): 8571-8572. [本文引用:1]
[11]
ZhaoB, Gao HL, Chen XY, et al, A promising MgII-ion-selective luminescent probe: structures and properties of Dy-Mn polymers with symmetry[J]. Chemistry-A European Journal, 2006, 12(1): 149-158. [本文引用:1]
[12]
LiuB, SmitB. Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs[J]. The Journal of Physical Chemistry C, 2010, 114(18): 8515-8522. [本文引用:1]
[13]
Park KS, NiZ, Cote AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate foameworks[J]. Proceedings of the National Academy of Sciences, 2006, 103(27): 10186-10191. [本文引用:1]
[14]
WangS. Comparative molecular simulation study of methane adsorption in metai-organic frameworks[J]. Energy & Fuels, 2007, 21(2): 953-956. [本文引用:1]
[15]
YuanD, ZhaoD, SunD, et al. An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligand s and exceptionally high gas-uptake capacity[J]. Angewand te Chemie International Edition, 2010, 49(31): 5357-5361. [本文引用:1]
[16]
LatrocheM, SubleS, SerreC, et al. Hydrogen storage in the giant-pore metal-organic frameworks MIL-10and MIL-102[J]. Angewand te Chemie International Edition, 2006, 45(48): 8227-8231. [本文引用:1]
[17]
HamonL, SerreC, DevicT, et al. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr) and MIL-100(Cr) metal-organic frameworks at room temperature[J]. Journal of the American Chemical Society, 2009, 131(25): 8775-8777. [本文引用:1]
[18]
LiH, EddaoudiM, Groy TL, et al. Establishing microporosity in open metal-organic frameworks: gas sorption Isotherms for Zn(BDC)(BDC=1, 4-Benzenedicarboxylate)[J]. Journal of The American Chemical Society, 1998, 120(33): 8571. [本文引用:1]
[19]
Rosi NL, Eddaoudi, YaghiO M, et al. Advances in the chemistry of metal-organic frameworks[J]. Cryst EngComm, 2002, 4(68): 401-404. [本文引用:1]
[20]
LiH, EddaoudiM, Yaghi OM, et al. Design and synthesis of an exceptionally stable and highiy porous metal-organic famework[J]. Nature, 1999, 402(6759): 276-279. [本文引用:1]
[21]
EddaoudiM, Kimj, YaghiO M, et al. Systematic design of pore size and functionality in Isoreticular mofs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. [本文引用:1]
[22]
GautamR. Desiraju. Crytal engineering: from molecules to materials[J]. Journal of Molecular Structure, 2003, 67(al): 5-15. [本文引用:1]
[23]
O’Keeffe, EddaoudiM, LiH, et al. Frameworks for extended solids: geometrical design principles[J]. Journal of Solid State Chemistry, 2000, 152(1): 3-20. [本文引用:1]
[24]
Xiang ZH, Leng SH, Cao DP. Functional group modification of metal-organic frameworks for CO2 capture[J]. Journal of Physical Chemistry C, 2012, 116(19): 10573-10579. [本文引用:1]
[25]
KlinowskiJ, PazF A A, SilvaP, et al. Microwave-assisted synthesis of metal-organic frameworks[J]. Dalton Transactions, 2011, 40: 321-330. [本文引用:1]
[26]
Bang JH, Suslick KS. Applications of ultrasound to the synthesis of nanostructured materials[J]. Advanced Materials, 2010, 22: 1039-1059. [本文引用:1]
[27]
Fri IT. New opportunities for materials synthesis usingmechanochemistry[J]. Journal of Materials Chemisty, 2010, 20: 7599-7605. [本文引用:1]
MolinerM, Serra JM, CormaA, et al. Application of artificial neural networksto high-throughput synthesis of zeolites[J]. Microporous and MesoporousMaterials, 2005, 78: 73-81. [本文引用:1]
[30]
ForsterP, ThomasP, CheethamA. Biphasic solvothermal synthesis: Anew aooroach for hybrid inorganic-organic materials[J]. Chemistry of Material, 2002, 14(1): 17-20. [本文引用:1]
[31]
SunL, XingH, XuJ, et al. A novel(3, 3, 6)-connected luminescent metal-organic famework for sensing of nitroaromatic explosives[J]. Dalton Trans, 2013, 42(15): 5508-5513. [本文引用:1]
[32]
YuanC, LiJ, HanP, et al. Enhanced electrochemical performance of poly (ethyleneoxide) based composite poiymer electrolyte by incorporation of nano-sized Metal-organic framework[J]. Journal of Power Sources, 2013, 240: 653-658. [本文引用:1]
[33]
LiJ, ChengS, ZhaoQ, et al. Synthesis and hydrogen-storage behavior of metal-organic framework MOF-5[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1377-1382. [本文引用:1]
[34]
Tranchemontagne DJ, Hunt JR, Yaghi OM. Room temperature synthesis of metal-organic gramework: MOF-5. MOF-74, MOF-177, MOF-199, and IRMOF-0[J]. Tetahedron, 2008, 64(36): 8553-8557. [本文引用:1]
[35]
YagiO, LiG, LiH. Crystal growth of extended solids by nonaqueous gel diffusion[J]. Chemistry of Materials, 1997, 9(5): 1074-1076. [本文引用:1]
[36]
LinZ, Wragg DS, Morris RE. Microwave-assisted synthesis of anionic metal-organic frameworks under ionothermal conditions[J]. Chemical Communications, 2006, (19): 2021-2023. [本文引用:1]
[37]
Seo YK, HundalG, Jang IT, et al. Microwave synthesis of hybrid inorganic-organic Materials including porous Cu3(BTC)2 form Cu (Ⅱ)-trimesate mixture[J]. Microporous and Mesoporous Materials, 2009, 119(1): 331-337. [本文引用:1]
[38]
Tompsett GA, Conner WC, Yngvesson KS. Microwave synthesis of nanoporous materials[J]. ChemPhysChem, 2006, 7(2): 296-319. [本文引用:1]
[39]
Li ZQ, Qiu LG, XuT, et al. Ultrasonic synthesis of the microporous metal-organic gramework Cu3(BTC) at ambient temperature and pressure: an efficient and environmentally friendly method[J]. Materials Letters, 2009, 63(1): 78-80. [本文引用:1]
[40]
Qiu LG, Li ZQ, WuY, et al. Facile synthesis of nanocrystals of microporpus meta-organic framework by an ultrasonic method and selective sensing of organoamines[J]. Chemical Communications, 2008, (31): 3642-3644. [本文引用:1]
[41]
Son WJ, KimJ, KimJ, et al. Sonochemical synthesis of MOF-5[J]. Chemical Communications, 2008, (47): 6336-6338. [本文引用:1]
[42]
HuangL, WangH, ChenJ, et al. Synthesis, morphology control, and properties of porous metal-organic coorgination polymers[J]. Microporous and Mesoporous Materials, 2003, 58(3): 105-114. [本文引用:1]
[43]
MuellerU, HesseM, LobreeL, et al. Organometallic building materials and method for producing the same: EP1373277(B1) [P]. 20008-12-03[本文引用:1]
[44]
HiguchiT, KozawaS. Process for producing polyalkylene oxide derivatives: DE69031814T[P]. 1990-05-03. [本文引用:1]
ChenB, Ockwig NW, Millward AR, et al. High H2 adsorption in a microporpus metal-organic framework with open metal sites[J]. Angewand te Chemie, 2005, 117(30): 4823-4827. [本文引用:1]
[47]
KondoM, OkuboT, AsamiA, et al. Rational synthesis of stable channel-like cavities with methane gas adsorption propertics: [{Cu2(pzdc)2(L)}n](pzde=pyrazine-2, 3-dicarboxylate;L=a Pillar Ligand ). Angewand te Chemie Internationl Edition, 1999, 38(1-2): 140-143. [本文引用:1]
[48]
EddaoudiM, KimJ, RosiN, et al, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. [本文引用:1]
[49]
Wood CD, TanB, TrewinA, et al. Micoporous organic polymers for methane storage[J]. Advanced Mateials, 2008, 20(10): 1916-1921. [本文引用:1]
[50]
GuoH, ZhuG, Hewitt IJ, et al. “Twin Copper Source”growth of metal-organic Framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2[J]. Journal of the American Chemical Socieil, 2009, 131(5): 1646-1647. [本文引用:1]
[51]
Fang QR, Yuan DQ, SculleyJ, et al. Functional mesoporous metal-organic frameworks for the capture of heavy metal ions and sizeselective catalysis[J]. Inorganic Chemistry, 2010, 49: 11637-11642. [本文引用:1]
[52]
Harbuzaru BV, CormaA, ReyF, et al. A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework[J]. Angewand te Chemie InternationalEdition, 2009, 48: 6476-6479. [本文引用:1]
[53]
GeL, WangL, RudolphV, et al, Hierarchically structured metal-organic framwork/vertically-aligned carbon nanothubes hybrids for CO2 capture[J]. RSC Advances, 2013, 3(47): 25360-25366. [本文引用:1]