基于过渡金属电催化析氢催化剂的研究进展
邱雯曦1,*, 钟辉云1, 周礼仕1, 王爱萍2
1.四川卫生康复职业学院药学系,四川 自贡 643000
2.四川卫生康复职业学院基础医学部,四川 自贡 643000
通讯联系人:邱雯曦。E-mail:qiuwenxi1986@126.com

作者简介:邱雯曦,1986年生,女,四川省自贡市人,在读博士研究生,讲师,主要从事电催化研究。

摘要

随着人口快速增加,开发可持续能源已经成为当今世界的首要任务之一。氢气被认为是一种无污染、可再生的新能源,可以代替化石能源。氢气可以由电解水的电催化析氢半反应获得。传统的电催化析氢催化剂主要由贵金属构成,而贵金属稀少,价格昂贵,不适合大规模工业制氢。探索高效的非贵金属电催化析氢反应催化剂十分必要。基于过渡金属开发的电催化析氢反应催化剂引起广泛关注,综述基于过渡金属电催化析氢反应催化剂的研究进展,概述电解水原理,讨论基于过渡金属化物的电催化析氢反应催化剂材料的制备方法,包括硫化物、硒化物、碳化物、氮化物、磷化物及其复合物。探讨增强催化剂电催化析氢活性的方法及基于非贵金属电催剂材料面临的挑战和前景展望。

关键词: 能源化学; 电催化析氢; 过渡金属; 硫化物; 硒化物; 碳化物; 氮化物
中图分类号:TQ116.2;O643.36    文献标志码:A    文章编号:1008-1143(2020)09-0008-09
Research advances on transition metals-based electerocatalysts for hydrogen evolution reaction: A review
Qiu Wenxi1,*, Zhong Huiyun1, Zhou Lishi1, Wang Aiping2
1.Department of Pharmacy,Sichuan Vocational College of Health and Rehabilitation,Zigong 643000, Sichuan,China
2.Department of Basic Medicine,Sichuan Vocational College of Health and Rehabilitation,Zigong 643000,Sichuan,China
Abstract

With the rapid population growth,exploration of sustainable energy has become one of the most important problems of the current century.As a substituion for conventional fossil fuel,hydrogen is considered to be a pollution-free and renewable energy source.The method of hydrogren production from water electrolysis is widely raised.The noble metals-based electrocatalysts are limited for laege-scale hydrogen production,due to low abundance and expensive price of the noblemetals.More focus is made on transition metal catalysts for the hydrogen evolution reaction (HER).This review highlights the recent research efforts towards various synthetic strategies for noble metal-free hydrogen evolution electrocatalysts.In this content,after a brief of the fundamental aspects of the electrochemical water splitting,emphasis is given to discuss the metal sulfides,metalselenides,metalcarbides,metalnitrides,metal phosphides and their composites served as efficient and low-cost hydrogen evolution reaction electrocatalysts.This content ends with some views for enhanceing the electrocatalytic activity along with challenges and prospective of the development of tansition metals-based electrocatalysts.

Keyword: energy chemistry; electrocatalytic hydrogen evolution; transition metals; sulfides; selenides; carbides; nitrides

全球能源消耗逐年增加, 能源已成为制约国家经济发展的重要因素。化石能源(石油、煤炭、天然气)不仅贮藏有限, 使用过程中会产生一系列环境问题, 如温室效应。氢被广泛认为是一种环境友好燃料, 无污染可再生, 且燃烧值高和储量丰富。目前, 制氢方法主要有:传统化石燃料重整法[1]、活泼含氢化合物或金属的水解[2]和水分解[3]。传统化石燃料重整法是目前工业制氢的主要方式, 首先将天然气、原油和煤类等化石燃料中的碳转化为CO, 再通过水蒸气变化反应产生H2, 同时CO被进一步氧化成CO2。此方法在产生氢气的同时会排出大量CO2, 且由于化石燃料常含有N、S元素, 会产生氮硫氧化物等废气, 加剧能源危机及环境污染。显然这是一种难以实现可持续发展的制氢方法[4]。活泼含氢化合物或金属的水解制氢可快速制氢, 但是这些原料的生产过程会造成严重的环境污染, 不符合绿色发展的初衷[5]。太阳光催化水分解制氢, 绿色、可再生和无污染, 但是产生氢气的效率慢, 不适宜大规模、快速的工业化生产[6]。电解水制氢与前面几种方法相比, 能有效利用可再生清洁能源(如风能、太阳能)作为驱动力[7], 改变外加电压还可以调节氢气产生速率从而实现大规模制氢。本文综述基于过渡金属电催化析氢催化剂的研究进展。

1 电解水制氢
1.1 工作原理

电解水装置包括电源、阳极、阴极和电解液。水分解反应可分为两个半反应, 即析氧反应和析氢反应。电极施加一定电压后, 阳极发生析氧反应, 阴极发生析氢反应。在不同电解液中, 水分解反应有不同的化学表达方式。在碱性电解液中, 反应方程为[3]:

总反应式:2H2O=O2+2H2, E=1.23 V(1)

阳极析氧反应:4OH-=O2+H2+4e-, E=1.23 V (2)

阴极析氢反应:2H2O+2e-=H2+2OH-, E=0 V (3)

由公式(1)~(3)可知, 在标准温度和大气压下, 理论析氢电位是0 V, 析氧电位是1.23 V, 但两个反应是多电子转移过程, 每一过程会产生动力学能垒, 所以需要额外的电力来克服能垒引起的过电位。

1.2 电催化析氧反应

析氧反应是电解水的重要半反应。碱性介质中, 电极表面的OH-离子失去电子后变成* OH吸附在电极表面, * OH与溶液中的自由OH-进一步结合产生* O, 溶液中的OH-再与* O结合产生* OOH。* OOH快速与溶液中OH-结合得到* O2, * O2在电极表面发生脱附释放出 O2[8], 具体反应过程为:

* +OH-→ * OH+e- (4)

* OH+OH-→ H2O+* O+e- (5)

* O+OH-→ * OOH+e- (6)

* OOH+OH-→ * O2+e- (7)

* O2→ * O2 (8)

式中, * 为催化剂表面活性位点, * OH、* OOH、* O分别为电极表面吸附的中间产物。

析氧反应是四电子转移过程, 因此其反应动力学过程缓慢, 需要较大的过电势才能加快析氧速率。这将制约电解水制氧能量转化效率。设计高效的催化材料是解决这一问题的有效途径。

1.3 电催化析氢反应

电催化析氢反应(两电子转移过程)较析氧反应(四电子转移过程)动力学过程更快, 但仍存在反应壁垒, 该半反应需较高的过电势。为加快析氢反应, 开发高效的催化剂同样尤为重要。

电催化析氢反应是在固体电极表面发生的一个多步电化学过程。酸性电解液中, 析氢反应主要包括三步:首先, 水合质子(H3O+)得到电子生成H* , 此过程为方程(9), 称为Volmer反应。其次, H* 通过Heyrovsky(10)或Tafel反应路径生成氢分子。最后通过解吸附释放氢气[7]

H3O++e-+* → H* +H2O (9)

Volmer:b= 2.303RTαF≈ 120 mV dec-1

H3O++e-+H* → H2+H2O (10)

Heyovsky:b= 2.303RT(1+α)F≈ 40 mV dec-1$

H* +H* → H2 (11)

Tafel:b= 2.303RT2F≈ 30 mV dec-1

式中, R为理想气体常数, T为绝对温度, F为法拉第常数, α 为对称系数, 约等于0.5。

碱性电解液中, 析氢反应与酸性电解液中的反应历程类似, 主要差异是第一步Volmer过程中, 水分子被还原成OH-和H* 。在形成H* 之前, 吸附水中H— O— H键需要先断裂。这一步比H3O+直接获得质子产生H* 更加困难。

H2O+e-→ H* +OH- (12)

Volmer:b= 2.303RTαF≈ 120 mV dec-1

H2O+e-+H* → H2+OH-(13)

Heyovsky:b= 2.303RT(1+α)F≈ 40 mV dec-1

H* +H* → H2 (14)

Tafel:b= 2.303RT2F≈ 30 mV dec-1

电极表面本来的化学性质及电子特性是以上反应路径的关键因素, 还可通过塔菲尔斜率, 来推断可能的析氢反应路径。

2 电催化析氢反应催化剂

目前, 贵金属铂是最高效的电催化析氢反应催化剂, 能有效加快析氢反应。铂的稀缺性及昂贵的价格, 均不利于铂大规模的用于电催化制氢。开发基于廉价过渡金属析氢催化剂成为研究重点。

2.1 金属硫化物

在各种硫化物中, MoS2是研究较早的电催化析氢催化剂材料, 但在很长一段时间内并没有取得理想结果。2005年, Hinnermann B等[9]发现MoS2中Mo的棱边结构与固氮酶的活性位点具有类相似之处。理论上探讨了MoS2作为电催化析氢催化剂的可行性, 氢原子与MoS2棱边结合键自由能与铂结合键自由能相当。Hinnermann B等将MoS2纳米颗粒固定在石墨上, 获得良好的析氢催化活性。Jaramillo T F等[10]进一步验证了MoS2纳米颗粒发挥析氢催化的活性位点主要集中在纳米材料表面的棱边。以上研究掀起了研究者们对MoS2的兴趣, 出现了许多研究致力于增加MoS2材料表面棱边, 以增强其催化活性[11, 12, 13]

W2S的结构及电子排布与Mo2S相似, 将其用于电催化析氢反应引起广泛关注[14, 15]。2013年, Chhowalla课题组通过锂嵌入-化学剥脱法制备了单层硫化物纳米片, 暴露更多的棱边位点, 对增强材料的催化活性至关重要[16]。Chhowalla课题组第一次用简单的水热法合成了WS2纳米片[17]。初始原料的选取是WS2纳米片形成的重要因素。碳基材料氧化石墨烯加入反应体系生成WS2-石墨烯复合纳米片, 其析氢催化活性增强。Cheng L等[18]用高温溶剂法以WCl6和S为原料, 油胺和1-十八烯作溶剂制备了单层WS2纳米片, 此材料尺寸小, 表面棱边丰富, 展现出较高的析氢催化活性及良好的稳定性。Yao Y等[19]在石墨炔上生长WS2, 形成2D-纳米复合材料, 此材料表面缺陷丰富, 以导电性能优异的石墨炔为载体, 因此, 在酸性条件下具有较高的析氢催化活性。3D-WS2/石墨烯/泡沫镍纳米复合物省去粘黏剂, 增加了电极的导电性, 提高了材料催化活性[20]

硫化镍、硫化铁和硫化钴在酸性介质中也具有良好的电催化析氢活性[21]。为增强其催化活性, 合成了FeS2/CoS2纳米片[22]、CoS2-W S2[23]、CoS2-C@CoS2核-壳纳米笼[24]和3D 蒲公英样Co S2[25]等材料。因此, 形成纳米复合物、改变材料形态, 获得更多的表面缺陷是增强材料催化活性的有效方法。

2.2 金属硒化物

Se和S在周期表中处于同一主族不同周期, 最外层都是6个电子, 过渡金属硫化物和过渡金属硫化物的化学性质既有类似之处, 又有不同之处。Se的原子半径比S大, 电离能小于S, 金属性大于S。因此, 硒化物的导电性大于硫化物, 这将有利于提升材料的催化活性。近年来, 研究者们以钼或钨硒化物作为析氢催化剂进行了大量的尝试和研究。Tsai C等[26]通过周期性密度泛函数探究MoSe2和WSe2纳米材料的催化机理, 发现MoSe2催化活性位点主要集中在Mo的棱边及Se的棱边, WSe2催化活性位点主要集中在Se的棱边。优化过渡金属硒化物的催化析氢性能的主要途径是改变材料结构, 提高边缘活性位点的利用效率。主要途径:制备单层或少层的硒化物纳米片来提高边缘活性位点, 如剥离技术; 控制合成手段使硒化物生长于优良电子导体的表面来改善电子传导能力。

Yang Q课题组用自下向上的方法合成MoSe2-x(x≈ 0.47)纳米片, 此方法简单快速, 所制得纳米片仅2~5个Se-Mo-Se原子层厚[27]。Lei Z等[28]用液相剥离法制备了多孔、极薄的MoSe2纳米片, 此结构利于活性位点的暴露及电子转移, 因此具有较高的析氢催化活性。Liu T课题组用细菌碳化得到的碳纳米纤维做模板, 诱导少层MoSe2纳米片的生长, 有效增加了MoSe2对氢原子吸附的活性位点, 再加上碳纳米纤维的3D结构加快电子的传递, 电催化析氢活性显著增加[29]。Wang Q课题组用化学气相沉积法在碳纳米纤维膜上制备了三维树枝状WSe2, 这种三维材料具备优异的电催化析氢性能主要源于三维材料表面丰富的棱边位点[30]。Wang X等[31]用一锅煮溶剂热法将WSe2纳米片与碳纳米管紧密结合, WSe2/CNTs材料表现出良好的析氢催化活性及稳定性。Sun X课题组通过水热生长和退火两步, 在碳布上制备了CoSe2纳米阵列, 具有优异的催化析氢活性, 在酸性介质中稳定性良好[32]。Wang K等[33]在碳纤维纸上生长“ 项链样” CoSe2纳米线, 增加了材料与电解质的接触面积利于氢气从表面脱吸附, 此材料展现出良好的催化析氢活性。Xu X等[34]报道了钴掺杂FeSe2/石墨烯材料在酸性介质中表现出良好的催化析氢催化活性。

2.3 金属碳化物

1973年, 文献[35, 36]发现碳化钨具有类似铂的催化行为。这一开创性工作引起广大研究者兴趣, 进而将碳基材料应用于不同领域。更多研究发现, β -Mo2C在酸性和碱性介质中均具有较高的析氢催化活性和稳定性[37, 38]。β -Mo2C的析氢催化活性受表面结构和元素构成直接影响[39]。研究者尝试用不同的方法合成Mo2C纳米线[40]、纳米棒[41]、纳米管[42]和纳米颗粒[43], 以提高催化析氢活性。Chen W F等[44]在碳纳米管上原位碳化钼酸铵合成Mo2C-碳纳米管复合材料, 较块状Mo2C电催化活性及稳定性增加许多。碳纳米管和石墨烯既可作为Mo2C的碳源又可作为Mo2C纳米簇的有效支撑材料, Mo2C与碳纳米管或石墨烯的复合材料表现出较高的电催化析氢性能[45, 46, 47]。Li F等[48]通过简单的方法制备了多孔反蛋白石样MoxC, MoxC纳米晶体具有Mo的空缺位点。此材料由于特殊的结构, 具有更多的活性位点, 加快传递, 因此增加了催化析氢活性。

碳化钨也是一种重要的电催化析氢反应催化剂, 酸性电介质中, 碳化钨的催化活性高于碳化钼[49]。Garcia-Esparza A T等[50]采用钨作为前驱体, 多孔石墨C3N4作反应模板合成了碳化钨纳米晶体(~5 nm), 具有较高的析氢催化活性及良好的稳定性。在碳化钨中掺杂氮是增强碳化钨催化活性的有效方法[51]。除此之外, 改变材料表面形貌及引入导电基体也是加强催化活性的方法。Zhang L等[52]制备了1D缆绳样WC/W2C异质结构纳米线, 并在表面覆盖少层N掺杂的石墨样碳, 由于增加了比表面积, 丰富了纳米孔, 组分可调, 此材料表现出较高催化活性及良好稳定性。N、P共同掺杂碳有利于增加碳材料的析氢催化活性, 杂原子的掺杂可以改变碳原子的电子结构, 更多的电子排入碳原子的π -轨道, 从而对氢离子的吸附增强。Zhang Q等[53]用聚苯胺和磷钨酸900 ℃原位氮化磷化W/W2C纳米颗粒。W/W2C异质结构有利于催化析氢中的电子传递, N和P的掺杂增加了催化析氢活性位点, 因此材料的催化析氢活性得到大幅度提升。Zhang H等[54]制备了3D多孔W2C呈反蛋白石样排列, 展现出良好的析氢催化活性及稳定性。

2.4 金属氮化物

氮化物理论模型不如相应的碳化物普遍, OyamaS T等[55]经理论推导, 发现C或N的sp价电子与Mo或W的spd带结合后, Mo或W在结构和化学反应性上类似于贵金属。过渡金属氮化物在各种反应中展现出较强催化活性[56, 57, 58]。2012年Chen W F等[59]为增强氮化钼(MoN)催化活性, 将Ni引入MoN形成Ni-Mo双金属氮化物, 有效减小Mo— H键能。Cao B等[60]用两步固态反应制备了钴钼氮化物, CoMoO4在NH3流下750 ℃焙烧12 h得到Co3Mo3N, 再将前驱体Co3Mo3N在NH3流下400 ℃焙烧1 h。此双金属氮化物晶体呈四层混合紧密堆积层结构, 具有八面体位点和三角棱柱位点, 表现出优异的催化性能, 在电流密度10 mA· cm-2时, 过电位仅为0.2 V。Xie J等[61]通过液体剥离法制备了原子厚度的MoN纳米薄片(~1.3 nm), 通过理论计算, 发现MoN纳米薄片具有金属性能, 能加快催化过程中电子转移。实验分析发现纳米片表面顶点的Mo原子是催化析氢的活性位点。Ojha K等[62]以石墨碳氮化物(g-C3N4)为氮源, 通过改变其用量来获得不同形貌的Mo2N(六边形、三角形、纳米线)。其中六边形Mo2N催化析氢活性最高且稳定。Kumar R等[63]制备了碳支持碳化钼及氮化钼的纳米复合材料颗粒(MoCat), 尺寸(8~12) nm, Mo2C-Mo2N在催化析氢过程中发挥协同作用, MoCat表现出较高析氢催化活性。Jia J等[64]用水热法在泡沫镍上生长了NiMoO4纳米棒Ni掺杂的氮化钼纳米棒, 在NH3气流、550 ℃焙烧3 h进行氮化, 得到的催化剂材料不仅具有丰富、易接近的电化学活性位点, 而且稳定性较好, 此材料在1.0 mol· L-1的KOH中, 发挥着优异的催化析氢活性, 电流密度达10 mA· cm-2时, 过电位仅为15 mV。

Xing Z等[65]将泡沫镍在NH3流和350 ℃焙烧2 h, 在泡沫镍上成功生成了氮化镍, 此方法简单易操作, 且得到的催化材料在酸性、碱性和中性条件下表现出优异的催化析氢活性和稳定性。Li S等[66]铜箔上制备Cu2O纳米线, 再通过液相阳离子交换法刻蚀Cu2O纳米线在其表面生长CoNi(OH)x纳米片的形貌, 进一步在氨气下经气相阴离子交换进行氮化。这种特殊的形貌利于加快电荷传输, 并导致丰富的电化学反应活性位点, 电子直接与表层下的电流接受器接触, 最终大幅度提高催化材料的析氢催化活性。Han L等[67]在碳布上制备了镍钴氢氧化物纳米线, 氨化后得到一维镍钴氮化物纳米线作为电催化析氢催化剂, 此材料虽为一维结构, 但其表面比镍钴氢氧化物更加粗糙, 且纳米线互相连接交织成网络样结构, 提供了更大的比表面积, 能有效加快传质, 增强导电性。Liu B等[68]用等离子体加强氮化泡沫镍得到氮空缺的氮化镍(Ni3N1-x), 自支撑Ni3N1-x/NF电极的电催化析氢活性能与工业Pt/C相媲美。

2.5 金属磷化物

金属磷化物是另一种不含Pt的电催化析氢催化剂, 且具有较高催化活性。2005年, Rodriguez J A课题组第一次通过泛函数理论计算, 发现Ni2P可能是最好的电催化析氢反应催化剂[69]。此后关于不同方法制备金属磷化物的报道不断涌现。以次亚磷酸钠作为磷源, 气固反应法制备金属磷化物, 最大的缺点就是要释放出有毒气体磷化氢[70]。Feng L等[71]通过简单的固态反应, 以廉价的NaH2PO2和NiCl2· 6H2O为原料合成了Ni2P纳米颗粒。磷化钴也被证实具有优异的析氢催化性能。Sun课题组在此领域有突出贡献, 采用水热法在碳布上生成钴基氢氧化物纳米阵列作为前驱体, 再用次亚磷酸钠为磷源进行原位磷化, 终产物不仅保留了前驱体的纳米阵列结构, 且纳米线表面增加了许多缺陷, 从而大幅度增加材料的电化学活性面积。磷化钴纳米线阵列用作电催化析氢反应催化剂时, 表现出优异的催化活性[72]。Liu Q等[73]将CoP附着在碳纳米管上, 比表面积及导电性的增加使材料的催化性能大幅提升。磷化钼由于良好的导电性、化学稳定性及类似铂的电子结构, 表现出优异的析氢催化活性[74, 75, 76]

许多研究发现, 改变金属磷化物材料的形貌可暴露更多的活性位点, 最终提高材料的电催化析氢活性。因此, 出现了不同形貌的金属磷化物如纳米管[77]、纳米盒[78]、纳米线[79]及纳米片[80]等, 旨在暴露更多的催化活性位点, 加强催化性能。此外, 向金属磷化物中掺杂Fe、Ni、Mn、Mo及W等元素以提高催化活性也是一种有效的方法[81, 82]。总之, 提高金属磷化物催化活性的方法主要是改进材料表面结构; 将具有良好导电性的介质如石墨片、石墨烯和碳纳米管, 作为基地, 合成金属磷化物材料; 元素掺杂。

3 结语与展望

未来电催化析氢将成为获得可持续能源的重要途径之一。因此, 探索低廉容易工业化的催化剂十分必要。金属铂虽有良好的催化活性, 但是铂含量稀少, 价格昂贵。目前, 过渡金属与非金属元素形成的纳米材料及纳米复合材料由于具有较高的化学稳定性、良好的电子电导率和较低的电阻率, 被认为是有效的电催化析氢反应催化剂。简要概述了电催化析氢反应的原理, 并分类讨论了金属硫化物、金属硒化物、金属碳化物、金属氮化物和金属磷化物材料的合成方法及其电催化活性。电催化析氢反应催化剂的活性很大程度上受到材料表面形貌、电催化活性位点和导电性的影响。为完善非贵金属电催化析氢反应催化剂, 还有很多需要解决的问题。(1) 优良的电催化析氢催化剂具有较多的催化活性位点及较低的电荷传递电阻。三维结构比二维结构能够提供更多的活性位点, 因此, 可能具有更高的催化活性; (2) 有效的催化剂材料粒度分布较均匀; (3) 电催化析氢行为通过分析催化剂的结构和性能之间的关系能够更容易理解; (4) 催化剂即使具有较高催化活性, 若稳定性较差, 也会使其失去实用价值。掺杂或形成复合材料是降低不稳定性的方法; (5) 为了降低成本简化过程, 有效的电催化剂应是多种用途, 如既是析氢催化剂又是析氧催化剂; (6) 制备催化剂的原料应该廉价易得。

基于过渡金属电催化析氢催化剂的研究还需进一步加深, 特别是关于在中性介质中如何提高电催剂活性方面。结合以上材料的合成方法, 为将来能制备出更高效、稳定、廉价和更有潜力的电催化剂用于大规模的制氢提供帮助。

参考文献
[1] Bareli L, Bidini G, Gallorini F, et al. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review[J]. Energy, 2008, 33: 554-570. [本文引用:1]
[2] Tadsree K, Li T, Jones S, et al. Hydrogen production from formic acid decompositon at room temperature using a Ag-Pd core-shell nanocatalyst[J]. Nature Nanotechnology, 2011, (6): 302-307. [本文引用:1]
[3] Zou X, Zhang Y. Noble metal-free hydrogy evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44: 5148-5180. [本文引用:2]
[4] Anantharaj S, Ede S R, Sakthikumar K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phospides catalysts of Fe, Co, and Ni: a review[J]. ACS Catalysis, 2016, (6): 8069-8097. [本文引用:1]
[5] Demirci U B, Akdim O, Miele P. Ten-year efforts and a no-go recommendation for sodium borohydride for on-board automotive hydrogen storage[J]. International Journal of Hygrogen Energy, 2009, 34: 2638-2645. [本文引用:1]
[6] Fountaine K T, Lewerenz H J, Atwater H A. Efficiency limits for photoelectrochemial water-splitting[J]. Nature Communications, 2016, (7): 13706. [本文引用:1]
[7] Wang J, Xu F, Jin H, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications[J]. Advanced Materals, 2017, 29: 1605838. [本文引用:2]
[8] Kuang M, Han P, Huang L, et al. Electronic tuning of Co, Ni-based nanostructured (hydr)oxides for aqueous electrocatalysis[J]. Advanced Functional Materials, 2018, 28: 1804886. [本文引用:1]
[9] Hinneman B, Moses P G, Bonde J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. Journal of the American Chemical Society, 2005, 127: 5308-5309. [本文引用:1]
[10] Jaramillo T F, Jorgensen K P, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317: 100-102. [本文引用:1]
[11] Kibsgaard J, Chen Z, Reinecke B N, et al. Engineering the surface structure of Mo2S to preferentially expose active edge sites for electrocatalysis[J]. Nature Materials, 2012, (11): 963-969. [本文引用:1]
[12] Li Y, Wang H, Xie L, et al. Mo2S nanoparticles grown on graphen: an advanced catalyst for the hydrogen evolution reaction[J]. Journal of American Society, 2011, 133: 7296-7299. [本文引用:1]
[13] Xie J, Zhang H, Li S, et al. Defect-rich MoS2 ultrathin nanosheets with additonal active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Advanced Matericals, 2013, 25: 5807-5813. [本文引用:1]
[14] Bonde J, Moses P G, Jaramillo T F, et al. Hydrogen evolution on nano-particulate transition metal sulfides[J]. Faraday Discussions, 2009, 140: 219-231. [本文引用:1]
[15] Holt C M B, Murphy S, Gray M R, et al. Electrocatalytical hydrogenation of 2-cyclohexen-1-one in a high sulfur enviroment using a carbon-supoorted nanostructured tungsten sulfide catalyst[J]. Catalysis Communications, 2012, 12: 314-317. [本文引用:1]
[16] Voiry D, Yamaguchi H, Li J, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution[J]. Nature Materials, 2013, (12): 850-855. [本文引用:1]
[17] Yang J, Voiry D, Ahn S J, et al. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced gasphene oxide as catalysts for enhanced hydrogen evolution[J]. Angewand te Chemie International Edition, 2014, 52: 13751-13754. [本文引用:1]
[18] Cheng L, Huang W, Gong Q, et al. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction[J]. Angewand te Chemie International Edition, 2014, 53: 7860-7863. [本文引用:1]
[19] Yao Y, Jin Z, Chen Y, et al. Graphdiyne-WS2 2D-nanohybrid electrocatalysts for high-performance hydrogen evolution reaction[J]. Carbon, 2018, 129: 228-235. [本文引用:1]
[20] Zhou H, Yu F, Sun J, et al. Highly active and durable self-stand ing WS2/graphene hybrid catalysts for hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2016, (4): 9472-9476. [本文引用:1]
[21] Kong D, Cha J J, Wang H, et al. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction[J]. Energy Enviromental Science, 2013, (6): 3553-3558. [本文引用:1]
[22] Li Y, Yin J, An L, et al. FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalysts for overall water splitting[J]. Small, 2018, 14: 1801070. [本文引用:1]
[23] Zhou X, Yang X, Li H, et al. Symmetrical synergy of hybrid CoS2-WS2 electrocatalysts for hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2017, (5): 15552-15558. [本文引用:1]
[24] Niu Y, Qian X, Zhang J, et al. Stepwise synthesis of CoS2-C@CoS2 yolk-shell nanocages with much enhanced elcctrocatalytical performances both in solar cells and hydrogen evolution reactions[J]. Journal of Materials Chemistry A, 2018, (6), 12056-12065. [本文引用:1]
[25] Yao N, Li P, Zhou Z, et al. Nitrogen engineering on 3D dand elion-flower-like CoS2 for high-performance overall water splitting[J]. Small, 2019, 15: 1901993. [本文引用:1]
[26] Tsai C, Chan K, Pedersen F A. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study[J]. Physical Chemistry Chemical Physics, 2014, (6): 13156-13164. [本文引用:1]
[27] Zou X, Jiang J, Ding T, et al. Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe2-x nanosheets for high-performance hydrogen evolution[J]. Nanosacle, 2014, 6: 11046-11051. [本文引用:1]
[28] Lei Z, Xu S, Wu P. Ultra-thin and porous MoSe2nanosheets: facile preparation and enhanced electrocatalytic activity towards the hydrogen evolution reaction[J]. Physical Chemistry Chemical Physics, 2016, 18: 70-74. [本文引用:1]
[29] Lai F, Yong D, Ning X, et al. Bionanofiberassited decoration of few-layered MoSe2nanosheet on 3D conductive networks for efficient hydrogen evolutio[J]. Small, 2017, 13: 1602866. [本文引用:1]
[30] Zou M, Zhang J, Zhu H, et al. 3D dendritic WSe2 catalyst grown on carbon nanofiber mats for efficient hydrogen evolution[J]. Journal of Materials Chemistry A, 2015, (3): 12149-12153. [本文引用:1]
[31] Wang X, Chen Y, Qi F, et al. Interwoven WSe2/CNTs hybrid network: a highly efficient and stable electrocatalyst for hydrogen evolution[J]. Electrochemistry Communications, 2016, 72: 74-78. [本文引用:1]
[32] Liu Q, Shi J, Hu J, et al. CoSe2 nanowires arrays as a 3D electrode for highly efficient electrochemical hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2015, (7): 3877-3881. [本文引用:1]
[33] Wang K, Xi D, Zhou C, et al. CoSe2 necklace-like nanowires supported by carbon fiber paper: a 3D integrated elctrode for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015, (3): 9415-9420. [本文引用:1]
[34] Xu X, Ge Y, Wang M, et al. Cobal-doped FeSe2-FGO as highly active and stable electrocatalysts for hydrogen evolution reactions[J]. ACS Applied Materials & Interfaces, 2016, (8): 18036-18042. [本文引用:1]
[35] Levy R B, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. Science, 1973, 181: 547-549. [本文引用:1]
[36] Montgomery R L. Electronic structure and catalytic behavior of tungsten carbide[J]. Science, 1974, 184: 563-565. [本文引用:1]
[37] Vrubel H, Hu X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions[J]. Angewand te Chemie International Edition, 2012, 51: 12703-12706. [本文引用:1]
[38] Kimmel Y C, Xu X, Yu W, et al. Trends in electrochemical stability of transition metal carbides and their potential use as supports for low-cost electrocatalysts[J]. ACS Catalysis, 2014, (4): 1558-1562. [本文引用:1]
[39] Xiao T, York A P E, Williams V C, et al. Preparaion of moly-bdenum carbides using butane and their catalytic performance[J]. Chemistry of Materials, 2000, (12): 3896-3905. [本文引用:1]
[40] Liao L, Wang S, Xiao J, et al. Ananoporous molybdenum carbide nanowire as an electrocatalysts for hydrogen evolution reaction[J]. Energy & Environmental Sicence, 2014, (7): 387-392. [本文引用:1]
[41] Xiao P, Yan Y, Ge X, et al. Investigation of molybdenum carbide nano-rod as an efficient and durable electrocatalyst for hydrogen evolution in acidic and alkaline media[J]. Applied Catalysis B: Enviromental, 2014, 154: 232-237. [本文引用:1]
[42] Ma F, Wu H B, Xia B Y, et al. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient elctrocatalyst for hydrogen production[J]. Angewand te Chemie International Edition, 2015, 54: 15395-15399. [本文引用:1]
[43] Tang C, Sun A, Xu Y, et al. High specific surface area Mo2Cnanoparticles as an efficient electrocatalyst for hydrogen evolution[J]. Journal of Power Sources, 2015, 296: 18-22. [本文引用:1]
[44] Chen W F, Wang C H, Sasaki K, et al. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production[J]. Engergy Enviromental Sicence, 2013, (6): 943-951. [本文引用:1]
[45] Youn D H, Han S, Kim J Y, et al. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support[J]. ACS Nano, 2014, (8): 5164-5173. [本文引用:1]
[46] Liu Y, Yu G, Li G, et al. Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites[J]. Angewand te Chemie, 2015, 54: 10752-10757. [本文引用:1]
[47] He C, Tao J. Synthesis of nanostructured clean surface molybdenum carbides on graphene sheets as efficient and stable hydrogen evolution reaction catalysts[J]. Chemical Communications, 2015, 51: 8323-8325. [本文引用:1]
[48] Li F, Zhao X, Mahmood J, et al. Macroporous inverse opal-like MoxC with incorporated Mo vacancies for significantly enhanced hydrogen evolution[J]. ACS Nano, 2017, (11): 7527-7533. [本文引用:1]
[49] Wirth S, Harnisch F, Weinmann M. Comparative study of IVB-VIB transition metal compound electrocatalysts for the hydrogen evolution reaction[J]. Applide Catalysis B: Environmental, 2012, 126: 225-230. [本文引用:1]
[50] Garcia-Esparza A T, Cha D, Ou Y, et al. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water spiltting[J]. ChemSusChem, 2013, (6): 168-181. [本文引用:1]
[51] Zhao Y, Kamiya K, Hashimoto K, et al. Hydrogen evolution by tungsten carbonitridenanoelectrocatalysts synthesized by the formation of a tungsten acid/polymer hybrid in situ[J]. Angewand te Chemie International Edition, 2013, 52: 13638-13641. [本文引用:1]
[52] Zhang L, Ma Y, Lang Z, et al. Ultrafine cable-like WC/W2C heterojunction nanowires covered by graphitic carbon towards high efficient electrocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2018, (6): 15395-15403. [本文引用:1]
[53] Zhang Q, Luo F, Hu H, et al. A robust electrocatalytic activity toward hydrogen evolution reaction from W/W2C heterostructured nanoparticles coated with a N, P dual-doped carbon layer[J]. Chemical Communications, 2019, 55: 9665-9668. [本文引用:1]
[54] Zhang H, Pan Q, Sun Z, et al. Three-dimensional macroporous W2C inverse opal arrays for the efficient hydrogen evolution reaction[J]. Nanoscale, 2019, (11): 11505. [本文引用:1]
[55] Oyama S T. Crystal structure and chemical reactivity of transition metal carbides and nitrides[J]. Journal of Solid State Chemistry, 1992, 96: 442-445. [本文引用:1]
[56] Wu Z, Hao Z, Ying P, et al. An IR study on selective hydrogen of 1, 3-butadiene on transition metal nitrides: 1, 3-butadiene and 1-butene adsorption on Mo2N/γ-Al2O3 catalyst[J]. The Journal of Physical Chemistry B, 2000, 104: 12275-12281. [本文引用:1]
[57] Mckay D, Hargreaves J S J, Rico J L, et al. The influence of phase and morphology of molybdenum nitrides on ammonia synthesis activity and reduction charateristics[J]. Journal of Solid State Chemistry, 2008, 181: 325-333. [本文引用:1]
[58] Cardona C M, Elliott B, Echegoyen L. Unexpected chemical and electrochemical properties of M3N@C80(M=Sc, Y, Er)[J]. Journal of the American Chemistry Society, 2006, 128: 6480-6485. [本文引用:1]
[59] Chen W F, Sasaki K, Ma C, et al. Hydrogen-evolution catalysts based on non-noble metal nicjel-molybdenum nitride nanosheets[J]. Angewand teChemie International Edition, 2012, 51: 12703-12706. [本文引用:1]
[60] Cao B, Veith G M, Neuefeind J C, et al. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135: 19186-19192. [本文引用:1]
[61] Xie J, Li S, Zhang X, et al. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution[J]. Chemical Science, 2014, (5): 4615-4620. [本文引用:1]
[62] Ojha K, Saha S, Kumar B, et al. Controlling the morphology and efficient of nanostructured molybdenum nitride electrocatalysts for the hydrogen evolution reaction[J]. ChemCatChem, 2016, (8): 1218-1225. [本文引用:1]
[63] Kumar R, Rai R, Goutam S, et al. Nano-structured hybrid molybdenum carbides/nitrides genetated in-situ for HER applications[J]. Journal of Materials Chemistry A, 2017, (5): 7764-7768. [本文引用:1]
[64] Jia J, Zhai M, J, et al. Nickel molybdenum bitridenanorods grown on Ni foam as efficient and stable bifunctional electrocatalysts for overall water splitting[J]. ACS Applied Materials & Interfaces, 2018, (10): 30400-30408. [本文引用:1]
[65] Xing Z, Li Q, Wang D, et al. Self-supported nickel nitride as an efficient high-performance three-dimensional cahtode for the alkaline hydrogen evolution reaction[J]. Electrochimica Acta, 2016, 191: 841-845. [本文引用:1]
[66] Li S, Wang Y, Peng S, et al. Co-Ni-based nanotubes/nanosheets as efficient water splitting electrocatalysts[J]. Advanced Engergy Materials, 20116, (6): 1501661. [本文引用:1]
[67] Han L, Feng K, Chen Z. Self-supported cobal nickel nitride nanowires electrode for overall electrochemical water splitting[J]. Energy Technology, 2017, (5): 1908-1911. [本文引用:1]
[68] Liu B, He B, Peng H, et al. Unconventional nickel nitride enriched with nitrogen vacancies as a high-efficiency electrocatalyst for hydrogen evolution[J]. Advanced Science, 2018, (5): 148-151. [本文引用:1]
[69] Liu P, Rodriguez J A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect[J]. Journal of the American Chemical Society, 2005, 127: 14871-14878. [本文引用:1]
[70] Carenco S, Portehault D, Boissiere N. Nanoscaled metal borides and phosphides: recent developments and perspectives[J]. Chemical Reviews, 2013, 113: 7981-8065. [本文引用:1]
[71] Feng L, Vrubel H, Bensimon M, et al. Easily-prepared dinickel phosphide(Ni2P)nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution[J]. Physical Chemistry Chemical Physics, 2014, 16: 5917-5921. [本文引用:1]
[72] Tian J, Liu Q, Asiri A M, et al. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evovlingcathode over the wide range of pH 0-14[J]. Journal of the American Chemical Society, 2014, 136: 7587-7590. [本文引用:1]
[73] Liu Q, Tian J, Cui W, et al. Carbon nanotubes decorated with CoPnanocrystals: a highly active non-noble-metal nanohybridelectrocatalyst foe hygrogen evolution[J]. Angewand te Chemie International Edition, 2014, 53: 6710-6714. [本文引用:1]
[74] Zhang X, Yu X, Zhang L, et al. Molybdenum phosphide/carbon nanotube hybrids as pH-universal elctrocatalysts for hydrogen evolution reaction[J]. Advance Functional Materials, 2018, 28: 1706523. [本文引用:1]
[75] Wu T, Pi M, Zhang D, et al. Three-dimensional porous structual MoP2 nanoparticles as a novel and superior catalyst for electrochemical hydrogen evolution[J]. Journal of Power Sources, 2016, 328: 551-557. [本文引用:1]
[76] Pu Z, Amiinu I S, Wang M, et al. Semimetallic MoP2: an active and stable hydrogen evolution electrocatalyst over the whole pH range[J]. Nanoscale, 2016, 16(8): 8500-8504. [本文引用:1]
[77] Chen J, Liu J, Xie J, et al. Co-Fe-P nanotubes electrocatalysts derived from metal-organic frameworks for efficient hydrogen evolution reaction under wide pH range[J]. Nano Enrtgy, 2019, 56: 225-233. [本文引用:1]
[78] Wang X, Na Z, Yin D, et al. Phytic acid-assited formation of hierarchical porous CoP/C nanoboxes for enhanced lithium storage and hydrogen generation[J]. ACS Nano, 2018, (12): 12238-12246. [本文引用:1]
[79] Yu Y, Qiu X, Zhang X, et al. Metal-organic frameworks derived bundled N-doped carbon nanowires confined cobalt phosphide nanocrystals as a robust electrocatalyst for hydrogen production[J]. Electrochimica Acta, 2019, 299: 423-429. [本文引用:1]
[80] Tang C, Xie L, Wang K, et al. A Ni2P nanosheet array integrated on 3D Ni foam: anefficient, robust and reusable monolithic catalyst for the hydrolytic dehydrogenation of ammonia borane toward on-demand hydrogen generation[J]. Journal of Materials Chemistry A, 2016, (4): 12407-12410. [本文引用:1]
[81] Guan C, Xiao W, Wu H, et al. Hollow Mo-doped CoPnanoarrays for efficient overall water splitting[J]. Nano Energy, 2018, 48: 73-80. [本文引用:1]
[82] Pan Y, Sun K, Lin Y, et al. Electronic structure and d-band center control engineering over M-doped CoP(M=Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production[J]. Nano Energy, 2019, 56: 411-419. [本文引用:1]