以Pt/SAPO-11为催化剂、正十六烷为模型化合物,进行加氢异构性能反应评价。采用六西格玛设计中的实验设计(DOE)及分析方法拟合并研究各评价参数(反应温度、氢气分压、氢气流速和进料速率)对催化性能的影响及交互作用关系。结果表明,升高反应温度对正十六烷的转化有利,增加氢气分压和进料速率均抑制正十六烷的转化,达到相同转化率需要更高的反应温度,而异构十六烷选择性随温度升高呈现降低趋势;氢气流速的变化对正十六烷转化率和异构十六烷选择性影响较小。拟合结果显示,各评价条件对转化率和异构选择性的影响关系类似,反应温度、氢气分压和氢气流速各自为线性关系,但进料速率与反应温度和氢气分压分别有交互作用,且自身存在二次影响关系,因此,进料速率对评价结果呈曲率影响关系。
CO优先氧化方法是去除富氢气CO中最为有效的方法,而且钴铈催化剂又受到重点研究和关注。通过共沉淀法制备不同CuO掺杂量的8Co3O4-1CeO2-cCuO催化剂,使用透射电镜、高分辨透射电镜、X射线粉末衍射、N2吸附-脱附和程序升温还原以及比表面积等测试手段对催化剂进行表征,并对其在富氢气条件下CO优先氧化性能进行研究。结果表明,掺杂适量CuO的钴铈催化剂,其催化活性较未添加CuO的催化剂明显提高,其中钴铈铜物质的量比为8∶1∶1的催化剂其CO 完全转化温度降低至115 ℃,同时添加适量CuO的催化剂粒径明显减小,表面分散度改善,增强了Cu-Co-Ce间相互作用,具有较好的催化活性。
以浸渍法制备VMo/γ-Al2O3和VMoMg/γ-Al2O3催化剂,考察其催化丙烷氧化脱氢制丙烯的反应活性,采用XRD、UV-Vis DRS和In suit IR对催化剂进行表征。结果表明,V负载质量分数为3%、Mo负载质量分数为7%时的3V7Mo/γ-Al2O3催化剂表现出较好的催化性能;添加Mg后催化剂的催化性能有所改善,反应温度500 ℃时,丙烷转化率为18.19%,丙烯选择性74.76%。丙烷和丙烯在3V7Mo/γ-Al2O3和3V7Mo4Mg/γ-Al2O3催化剂上吸附后,C—H键的H与催化剂活性中心的晶格氧发生作用形成H—O键,且3V7Mo4Mg/γ-Al2O3催化剂上出现C—O键的温度比3V7Mo/γ-Al2O3催化剂高,表明加入Mg有利于提高丙烯选择性。
以可溶性淀粉为碳源、三嵌段共聚物F127为模板剂和K2CO3为活化剂,采用一步合成法制备系列淀粉基碳分子筛。通过扫描电子显微镜和N2吸附-脱附分析淀粉基碳分子筛孔隙形貌和孔结构,采用热重-TG和傅里叶红外光谱表征原料和样品的物质结构官能团。结果表明,K2CO3浓度、F127添加比例、反应时间和反应温度影响淀粉基碳分子筛的孔隙结构。在炭化温度800 ℃、K2CO3浓度为0.50 mol·L-1、F127与淀粉质量比=1∶3、反应温度50 ℃和反应时间12 h条件下制备的淀粉基碳分子筛,孔径集中于0.63 nm,比表面积为1 069.290 4 m2·g-1,单点孔容0.667 901 cm3·g-1。